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We propose a biological cortical column model, at an intermediate mesoscopic scale, in order to better
understand and interpret biological sources of voltage-sensitive dye imaging signal (VSD signal). To perform
a quantitative analysis of the relative contributions to the VSD signal, a detailed compartmental model was
developed at a scale corresponding to one pixel of optical imaging. The generated model was used to solve
the VSD direct problem, i.e. generate a VSD signal, given the neural substrate parameters and activities. Here,
we confirm and quantify the fact that the VSD signal is the result of an average from multiple components.
Not surprisingly, the compartments that mostly contribute to the signal are the upper layer dendrites of
excitatory neurons. However, our model suggests that inhibitory cells, spiking activity and deep layers
contributions are also significant and, more unexpected, are dynamically modulated with time and response
strength.
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Introduction

Optical imaging comes within the scope of new imaging techniques
that allow us to visualize the functioning brain at both high spatial and
temporal resolutions. There are two main techniques (see Grinvald
et al., 1999, for an introduction); the first is based on intrinsic signals
which measure mostly absorption of the oxy- or deoxy-hemoglobin
reflecting indirectly the neuronal activity, but also changes in scattering
properties of the tissue. The second is based on voltage-sensitive dyes
(VSDs), which bind to the membrane and transform variations in the
membrane potential into optical fluorescence. The emitted fluores-
cence, recorded by a sensitive fast camera, is linearly correlated with
changes in membrane potential per unit of membrane area of all the
stained surfaces (Grinvald andHildesheim, 2004),meaning all neuronal
cells present in the cortex, but also all non-neuronal cells, such as glial
cells. Neuronal cells include excitatory cells (e.g. pyramidal cells, spiny
stellate cells) and inhibitory cells (e.g. basket cells, chandelier cells),
whose morphology and intrinsic properties are quite different.
Furthermore, each cell has various compartments, including dendrites,
somata and axons. Themeasured signal is therefore amultiplexed signal
that combines all these components. It is not straightforward to predict
the result of the combination of such a large amount of intermingled
components. Prediction of the origin of the VSD signal is also
complicated by non-linearities in neuronal interaction. One important
example of these non-linearities is coming from inhibition that mostly
acts in a divisive manner through shunting of the post-synaptic
recipient, without clear hyperpolarization of the membrane potential
(Borg-Graham et al., 1998). In other terms, a strong inhibition will not
obligatory induce a net decrease of the VSDI signal. Therefore, although
the underlying mechanism of the VSDI is well understood (Roland,
2002;Grinvald andHildesheim, 2004), the recorded signal remains very
complex and it is difficult to isolate the relative contributions of its
different components (see Chemla and Chavane, 2010, for a specific
review of the method limitation).

In this paper, our aim is to better understand the origin of the VSD
signal (see Fig. 1A): what is the exact participation of the various
neuronal components to this population signal? In particular, are
excitatory and inhibitory cells participating equally for different levels of
activity?What is the ratio between spiking and synaptic activity? Is this
ratio the same when the network is at low vs. high levels of activity?
What is the respective participation of cells from deep vs. superficial
layers?

To answer those questions, our strategy has been to develop a
biophysically inspired model to reproduce the optical imaging signal
(see Fig. 1B).Wemodeled in detail one cortical column of 50 μm,which
is one optical imaging averaged pixel size. This scale also corresponds to
the spatial scale of the biological experiments (Markram et al., 1998;
Gupta et al., 2000; Thomson et al., 2002; Thomson and Bannister, 2003),
which were used to establish the precise local connectivity rules of
columnar organization (Binzegger et al., 2004; Douglas and Martin,
2004; Haeusler and Maass, 2007) (red connectivity arrows, Fig. 1B). To
embed this isolated column into a larger, hence more realistic, cortical
network, we simulated an additional synaptic bombardment according
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Fig. 1. Rationale and detail of the model. A: Contributions to the optical signal. Once neurons are stained by the VSD, every neuronal membrane contributes to the resulting fluorescent
signal, but from where? and in which proportions? Answering these four questions could clarify the optical signal origins: 1) Which cells? 2) Which parts of the cell? 3) Which layers?
4)Whichpresynaptic origins? B: Schematic viewof the cortical columnmodel. Six specific populations of neurons: excitatory (dark gray) and inhibitory (light gray) populations in each of
the three layers (2/3, 4, and 5/6). Thalamic afference to layer 4 cells is symbolized by a dashed red arrow,while local connectivitywithin themodel is inspired fromBinzegger et al. (2004)
and has been sketched by red arrows (for clarity, only themain connections are represented). To obtain a more realistic behavior of our column, we added fluctuating conductances that
mimic synaptic bombardment according to Destexhe et al. (2001), here cartooned as green arrows. Finally, the isolated column has been embedded in a larger network by simulating
horizontal afferences from a large V1 network by random spike trains whose latency, frequency, and synaptic weight are tuned to fit data from Buzas et al. (2006), depicted here as blue
arrows.
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to Destexhe et al. (2001) (green arrows, Fig. 1B). Four types of neurons
were considered with only two distinct firing patterns, regular spiking
and fast spiking, since they are known to be respectively the great
majority of excitatory (dark gray, Fig. 1B) and inhibitory cells (light gray,
Fig. 1B) in the neocortex (Contreras and Palmer, 2003). To tease apart
the different contributions of the various components of the signal, we
dynamically explored functional parameters that are known to affect
differentially those components. Among all parameters, we decided to
manipulate the activity level (here thalamic input rate, dashed red
arrow, equivalent to contrast) both at the single neuron and the global
network level. These manipulations were applied within functional
regimes that are known to affect differentially excitatory (RS cells) and
inhibitory (FS cells) components of the network, but also the relative
contribution of membrane depolarization and spiking output.

In this article, we first describe the proposed model of cortical
column chosen to analyze biological sources of the optical signal, then
we discuss its behavior and its application for VSD signal computation.
We finally answer the previous questions.

Material and methods

Single neuron model

Each neuron is represented by a reduced compartmental descrip-
tion (see Bush and Sejnowski, 1993, for more details on the reduction
method) with conductance-based Hodgkin–Huxley neuron model
(Hodgkin and Huxley, 1952) in the soma and the axon. The dynamics
of single cells are described by the following equation:

Cm
dV
dt

= Iext−∑
i
GiðVÞðV−ViÞ ð1Þ

where V is the membrane potential, Iext is an external current injected
into the neuron,Cm is themembrane capacitance, andwhere three types
of current are represented: leak, potassiumand sodiumconductances or
respectively GL, GK and GNa. GL is independent of V and determines the
passive properties of the cells near resting potential. The sodium and
potassium conductances are responsible for the spike generation.

A slow potassium conductance (called M-conductance) was also
included in the dynamics of the excitatory population to reproduce the
observed adaptation of the spike trains emittedby theseneurons (Nowak
et al., 2003). This feature seems to be absent in inhibitory neurons
(Contreras and Palmer, 2003), as taken into account in this work.
Only passive dendrites were considered. Each neuron is repre-
sented with eight to ten compartments. The link between two
adjacent compartments j and k can be described by Eq. (2) (Hines and
Carnevale, 1997).

Cj
dVj

dt
+ Iionj = ∑

k

Vk−Vj

Rjk
ð2Þ

where Vj is the membrane potential in compartment j, Iionj is the net
transmembrane ionic current in compartment j, Cj is the membrane
capacitance of compartment j and Rjk is the axial resistance between
the centers of compartment j and adjacent compartment k.

Network architecture and synaptic interactions

We consider a class of models based on a cortical microcircuit (see
Raizada and Grossberg, 2003; Douglas and Martin, 2004; Haeusler and
Maass, 2007, formoredetails on this concept),whose simplified synaptic
connections aremade only between six specific populations of neurons:
two populations (excitatory and inhibitory) for three main layers (II/III,
IV, and V/VI). Thanks to the NEURON software1 and its Model DB
database, providing an accessible location for storing and efficiently
retrieving computational neuroscience models, we have been able to
reconstruct four types of neurons (Bush et al., 1999): small pyramidal
cells in layer II, spiny stellate cells in layer IV, large pyramidal cells in
layer V and smooth stellate cells in all layers. More precisely, the chosen
model is a model of 180 neurons, 143 excitatory neurons: 50 small
pyramidal (SP) in layer II/III, 45 spiny stellate (SS) in layer IV, 48 large
pyramidal (LP) in layer V/VI, and 37 inhibitory neurons of one unique
type: respectively 14, 13,10 smooth stellate in layers II/III, IV, V/VI
(SmS2, SmS4, and SmS5). The difference in morphology andmembrane
surface of these different neuronal types was then taken into account
when computing the VSD signal (see computation of the VSD signal).

Synaptic inputs were modeled as conductance changes. Excitatory
AMPA synapses are converging on dendrites of each neuron, whereas
inhibitory GABAa synapses are converging on soma of each neuron (see
Salin and Bullier, 1995 for a review on the subject). The number of
synapses involved in the projections between these different neuronal
types, including the afferent fromthe LGN (X/Y) (recalculated for 50 μm
cortical column), were based on Binzegger et al. (2004, see Fig. 12) for
the considered layers while latencies have been introduced for each
connection, following Thomson and Lamy (2007). This network
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Fig. 2. Inhibition operates in a shunting mode. Within the full network, the presynaptic
inhibitory neuron (upper trace) shunts the activity of the post-synaptic excitatory
neuron (lower trace). When zooming (lower panel), we verify the “silent” effect of this
inhibition since no net hyperpolarization is visible.
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architecture was built using the neuroConstruct software2 and run
on the NEURON simulator. A schematic view of the model is given in
Fig. 1B. Note that, as synaptic inputs are conductance-based and that the
GABAa reversal potential was chosen equal to the resting potential
(−70 mV), our inhibitory interactions are mostly shunting and not
hyperpolarizing (see Fig. 2). It has been indeed documented that
inhibitory interactions are acting in a silent, shunting mode (Borg-
Graham et al., 1998; Anderson et al., 2000; Fregnac et al., 2003). As VSDI
signal reports changes ofmembranepotential, itwas important to verify
that the inhibition implemented in the model acts silently without net
hyperpolarization.
Thalamic afferents, background activity and lateral interactions

Input signals from the thalamus into the neocortex layer IV are
simulated by applying 10 random spike trains (Alonso et al., 2001) to
each neuron in layer IV (45 SS+13 SmS4 neurons) (dashed red
arrow, Fig. 1B). Latencies were chosen randomly within a given
temporal window (initially tested from 0 to 10 ms with a uniform
distribution, and changed from 0 to 50 ms, see Results section) for
each input connection, to reproduce the temporal properties of the
geniculocortical pathway according to Reid and Alonso (1996). Rate of
the thalamic input was manipulated to study the influence of cortical
regime on the relative contributions of the different compartments
(see details in Results section). At a first approximation, this simplest
assumption on the thalamic drive describes well the thalamic
discharge statistics (Gazeres et al., 1998). We also introduced synaptic
depression in our thalamo-cortical synapses in order to scale down
the input activity range (0–100 Hz). We used the NEURON imple-
mentation of a model of short-term synaptic plasticity based on the
kinetics described by Tsodyks et al. (1998). Note that the mechanism
implemented here uses a conductance change instead of current
sources to represent synapses. At this point, the column is isolated.

In order to embed this column into a larger network, we proceeded
as follows. First, “background noise”was introduced in each neuron of
the column (green arrows, Fig. 1B). Typically, noise can be introduced
in the form of stochastic fluctuation of a current or an ionic
conductance. The stochastic model of Destexhe et al. (2001),
containing two fluctuating conductances, is used here, allowing us
2 http://www.neuroConstruct.org.
to simulate synaptic background activity similar to in vivo measure-
ments for a large network. The mean spontaneous firing rate and the
mean resting membrane potential of the neurons were adjusted
according to Monier et al. (2003) database.

Second, as the introduction of background activity was not
sufficient to account for the observed experimental signal time course
(see Results), an entire hypercolumn of about 750 μm was simulated
by introducing lateral interactions between neighboring columns.
This was done by introducing a convergent horizontal input to our
column which was de-correlated to the column neuronal activity
(blue arrows, Fig. 1B). This input consisted in another set of random
spike trains that are delayed in time to fit the known velocity of
horizontal axons and tuned in strength and synapses numbers to fit
the literature (Buzas et al., 2006, see Results).

Single neuron analysis

The spiking contribution for each input frequency was calculated as
follows: first, spikes were detected on intracellular recording with a
threshold of 0 mV. For each neuron, post stimulus time histograms
(PSTH) were then computed over all trials with 10 ms bin precision
during 1000 ms including 600 ms of evoked activity. We also averaged
thePSTHover a given subpopulationofneurons (for example, excitatory
and inhibitory classes in Figs. 4A,B,C, or different layers in Figs. 5Cand9).

To compare these subpopulations spiking activity to the global
VSD signal, correlation coefficients were computed at the trial-by-trial
level (Fig. 9). Here, spiking activity was pooled from all neurons
belonging to one subpopulation for a given trial to compute a global
PSTH at a 10 ms bin precision. Then, this trial-based population PSTH
was compared to the modeled VSD signal binned at the same
temporal precision (10 ms). A correlation coefficient was computed
between these two time series for three different time windows
([−200 −20]; [0 50]; [50;500]) and averaged on 30 trials.

The membrane potential contribution for each input frequency
was calculated as follows: the membrane potential of each neuron
was recorded at the middle of each of its compartments. To compute
the contributions of a given component (excitation, inhibition, soma,
layers, etc.), we then averaged the membrane potential over all the
considered compartments. For example we averaged the membrane
potential over all dendritic compartments of layer II neurons to
compute the overall subthreshold dendritic contribution of neurons in
superficial layer II.

Similarly to the spiking contribution, the subthreshold activity of
each compartment was also compared to the global VSD signal using a
trial-by-trial correlation analysis (Fig. 8). Correlation coefficients were
computed between the two time series at the same temporal
precision (0.1 ms), for three different time windows ([−200 −20];
[0 50]; [50;500]) and averaged on 30 trials.

Computation of the VSD signal

The VSD signal was simulated using a linear integration over the
membrane surface of all neuronal components (Grinvald and
Hildesheim, 2004). Here, the use of compartmental model has a real
interest since the computation of the VSD signal, for a given layer L, is
given by:

OIL = λL ∑
NL

i=0
Við0:5ÞSi ð3Þ

where NL is the number of compartments in layer L, Si is the surface of
the ith compartment, Vi(0.5) is the membrane potential taken in the
middle of the ith compartment, and λL represents the fluorescence's
gradient or the illumination intensity of the dye in layer L. We
reported in Table 1 the values of total membrane surface of each of the
modeled neurons. For information, we also reported what we called
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Table 1
Membrane surface and fluorescence emission capacity (membrane surface scaled by staining gradient) of the modeled neuronal types.

Neurons Pyramidal
L2

Pyramidal L5 Spiny stellate
L4

Smooth stellate

L2 L4 L5 L2 L4 L5

Number 50 0 0 48 45 37 37 37
Total membrane surface (μm2) 8218.4 1570.8 9180.3 21971.5 6694.7 6694.7 6694.7 6694.7
Fluorescene emission capacity (arbitrary units) 7807.4 1492.2 459 0 334.7 6359.9 334.7 0
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“fluorescence emission capacity” which is simply the membrane
surfaces scaled each by the staining gradient (i.e. StotλL). A detailed
illustration of the construction of VSD signal from our compartment's
activity is shown in Supplementary Fig. 1.

We thus can take into account soma, axon and dendrites influences,
introduce 2D geometrical properties (dendrites of large pyramidal
neurons in layer V can reach superficial layers) and fluorescence's
gradient depending on depth. According to Lippert et al. (2007) and
Petersen et al. (2003), we chose to take λ2=0.95, λ4=0.05 and λ5=0.
Note that in Lippert et al. (2007), this corresponds to dye diffusion in the
rat without dura removal which might differ from data in higher
mammal species (see Discussion section). Then, the total optical
imaging signal is given by the following formula:

OI = ∑
L∈fLayersg

OIL ð4Þ

For our model, we computed the fractional signal (ΔF/F) as done
experimentally Reynaud et al. (2007): we first transformed the level
of depolarization into amount of fluorescence (i.e. number of
photons) using an arbitrary linear transformation (F=aV+b with
a=1 and b=100) which is a first realistic approximation. Indeed, it is
the simplest choice to make sure that all compartments contribute
positively to the global signal, while it assumes that one photon is
emitted for each 1 mV increase of membrane potential. Then we
simulated the VSD signal in term of relative fluorescence by taking
relative variations of fluorescence (ΔF) compared to the resting level
(F) observed at rest. Note that this fractional signal is in arbitrary units
as it all depends on the parameter set (a and b) used to transform
voltage in fluorescence.

Results

Model behavior and quantitative adjustments

As mentioned in the Introduction, our idea is to evaluate the
contribution of the various components of the VSD signal as a function
of activity level. It was therefore mandatory to develop a model that
behaves realistically in response to different levels of activity, both at
the single neuron and the global network level. We thus started by
fitting the model to intracellular recordings references providing
information about subthreshold but also spiking activity as a function
of the level of input activity.

Single neuron regimes
We adjusted the intrinsic properties of our isolated neurons to fit

those shown in Nowak et al. (2003) from in vivo intracellular
recordings. For each neuron, the optimized parameters were the
channel conductances Gi, and the passive electrical properties of
compartments: the specific axial resistance Ra and the specific
capacitance Cm. The optimization algorithm used was the PRAXIS
(principal axis) method described by Brent (1976) and embedded
into the NEURON software. The parameter values are given in the
table of Fig. 3C. Excitatory and inhibitory neurons were modeled to
have regular spiking (RS) and fast spiking (FS) intrinsic properties,
since RS and FS cells are known to be respectively the greatmajority of
excitatory and inhibitory cells in the neocortex (Contreras and Palmer,
2003). Fig. 3 shows the action potential shapes of RS cells and FS cells
of the model, showing that RS cells fired action potentials of 1 ms
duration (Fig. 3A, left) measured at threshold, whereas FS cells
(Fig. 3A, right) had short-duration action potential (0.5 ms at
threshold), as documented in the literature (Contreras and Palmer,
2003). Examples of action potential responses to depolarizing current
injection in these two populations are also plotted. Here, RS cells
(Fig. 3B, left) produced adapting spike trains at about 60 Hz, whereas
FS cells (Fig. 3B, right) generated high frequency train of spikes at
about 300 Hz with pronounced and brief spike after hyperpolariza-
tions (AHPs), that fits properly the electrophysiological data from
Nowak et al. (2003) and Contreras and Palmer (2003).

From these action potential responses, we calculate the relation-
ship between injected current intensity (in nA) and the total firing
rate (in spikes per second). The slope (in Hz/nA) of the linear
regression characterizes the current–frequency relationship of the
neuron (Fig. 3D), which is one of the useful characteristics in
distinguishing between different types of neurons, as explained by
Nowak et al. (2003), especially RS and FS cells. This slope is
considerably steeper in the FS cell (375 Hz/nA) compared with that
for the RS cell (83.3 Hz/nA), in accordance with what is shown in
Nowak et al. (2003) (519 Hz/nA for the FS cell and 85 Hz/nA for the
RS cell).

Local network calibration
The next step in the validation of the model is at the level of the

whole connected local network of neurons. To calibrate this network
at different working regimes, we chose to compare the input–output
relationship predicted by the model to the contrast response function
(CRF) of V1 neurons classically recorded electrophysiologically, as
done in Contreras and Palmer (2003). The CRF describes the fact that
cortical cells adjust non-linearly their response to an input with
increasing strength (Albrecht and Hamilton, 1982). Non-linearities in
the CRF (compression and saturation) allow cortical cells to adjust the
useful dynamic response to an operating range of contrasts that can be
modulated. This control is supposed to be adjusted by a dynamic
balance between excitation and inhibition. Our manipulation of input
strength was simply to increase the thalamic rate. The correspon-
dence between input strength in contrast vs. spiking input rate is not
straightforward. Therefore, we chose to adjust ourmodel at saturation
level for which the network regimes can be compared, and only made
qualitative comparison for the rest of the response curve. The related
parameters to be adjusted are then the weight values of synaptic
connections, wEE, wEI, wIE and wII for connections between excitatory
neurons, from excitatory neurons onto inhibitory neurons, from
inhibitory onto excitatory neurons and between inhibitory neurons
respectively. This is done using the PRAXIS optimization algorithm
again. We obtain an interval for each of the four weight values by
fitting both the spike rate and the membrane potential of the two
populations, in response to contrast input, i.e. input rate. Then we
generate uniformly distributed random numbers over this specific
interval.

Input–output functions of excitatory and inhibitory population of
neurons, predicted by the model and obtained both with spike rate
and membrane potential are reported in Figs. 4A,D. We observe that



Fig. 3. Adjustment of electrophysiologyproperties of isolatedneurons. A: actionpotential shape of regular and fast spiking cells. Left: regular spiking (RS) cell. Right: fast spiking (FS) cell. B:
examples of action potential responses todepolarizing current injection in the twomain classes of cortical neuronof ourmodel,fittedwith intracellular recording fromNowaket al. (2003).
Left: regular spiking (RS) cell. Right: fast spiking (FS) cell. C: values of neurons parameters for the four types of neurons: small pyramidal cell in layer II (SP2), large pyramidal cell in layer V
(LP5), spiny stellate in layer IV (SS4) and smooth stellate inhibitory cell (SmS). GNa, GK, GM, and GL are respectively sodium, potassium, slow potassium and leak conductances. Cm is the
specificmembrane capacitance andRa is the specific axial resistance (S, A, andD for respectively Somas, Axons andDendrites compartments). D:firing rate vs. current intensity (f-I curves)
for the cells shown in Fig. 1B. Each point is the average of the mean firing rate for 5 repetitions of a given current intensity.
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Fig. 4. Input–output function of excitatory (RS cells: filled triangles) and inhibitory (FS cells: open circles) population of neurons, obtained with spike rate and membrane potential,
in a isolated column (A,C), after lateral interactions introduction (B,D), and after introduction of synaptic depression at the thalamo-cortical synapses (E–F). Each point is the average
of themean quantity for 10 repetitions of a given input rate. A,B,C: spike rate. D,E,F: membrane potential (Vm). Each input–output spiking rate function is fitted by an hyperbolic ratio
function (black curves). The values of the parameters n, C50 and Rmax are reported on the figure for each case.
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these curves are very similar to the CRFs obtained electrophysiolog-
ically in Contreras and Palmer (2003) for the two main populations of
neurons (RS and FS cells). As the authors suggested, the input–output
functions are best fitted by an hyperbolic ratio function (see black
lines in Fig. 4), also known as the Naka–Rushton equation of the form:

RðCÞ = Rmax ·
Cn

Cn
50 + Cn ð5Þ

where Rdenotes the response of the cell andC the contrast levels.Weuse
the values of the exponent n, the semi-saturation contrast C50 and the
maximum value of the response Rmax, i.e. parameters of the hyperbolic
ratio function, to quantify the quality of the fit. These three values are
reported on each plot. As concluded by Contreras and Palmer (2003),
there are no significant differences between the values of n and C50
obtained from spike responses and those obtained from membrane
potential responses. However, at this stage,wewere surprised to reach so
high semi-saturation input rates (more than 100 Hz). Indeed, we tuned
our model such as (i) inhibition was clearly but realistically dominating
excitation at high level activity regimes (Fig. 3D) and (ii) acting in a
divisive, shunting, manner (Fig. 2). These parameters were not enough
though to clearly saturate cortical response at high input rate. As
suggested by Carandini et al. (2002), we then decided to introduce a
synaptic depression term at the thalamo-cortical synapses (see Material
and methods). Synaptic depression introduction at the neuronal level
efficiently scaled down the input activity range (0–100 Hz), as shown in
Fig. 4C. Moreover, both responses (spike rate and Vm) now exhibited a
clear saturation at high frequency, as observed in electrophysiological
contrast response functions (Contreras and Palmer, 2003). Semi-
saturation input rates were scaled down to more realistic ranges, with
no significative difference between spiking and membrane potential
responses, or FS and RS cells (22 and 17 Hz).
To differentiate the two cells groups, the only important differences
are inRmaxobtainedwith spike rates, higher in FS cells (53.6 Hz) than inRS
cells (11.7 Hz), as also obtained by the authors (59.4 Hz vs. 8 Hz
respectively). Exponent n values are also similar between our model
and real neurons (1.6 vs. 2.03 for membrane potential and 2 vs. 2.15 for
spike rate). Note that values of Rmax and n were not affected by the
incorporation of the synaptic depression parameter.

The resulting biophysical model is thus a balanced local network of
detailed neurons (80% of RS cells and 20% of FS cells in the three main
layers of the cortex), with thalamic inputs and background activity. We
cannowproceed and compute theVSDsignal fromthedepolarization of
all our compartments of the well tuned model. In Fig. 5 we show the
gradual build-up of the VSD signal, from thalamic afference (A),
activating post-synaptic cortical cells (B and C), resulting in a global
VSD increase of fluorescence (D) with a delay in general between 5 and
10ms.

We will now first verify the adequacy of the model by comparing
our model dynamics with the same curves obtained experimentally.
Thereafter, two different quantitative explorations of the origins of
the VSD signal will be explored thanks to the neuronal compartmen-
talization of our model. A first correlation analysis will be devoted to
dissect the neuronal elements that mostly influence the global signal
dynamics. A second application will be to quantitatively predict the
relative contributions of the various VSD signal sources for increasing
level of thalamic input.

Temporal evolution of the modeled VSD signal
We simulated the VSD signal in response to focal stimuli, and

compared it to experimental results obtained by Reynaud et al.
(2007). In this experiment, the visual stimuli, a small luminance
Gaussian (0.5 standard deviation) is presented to a behaving monkey
during 800 ms whose task was simply to fixate a dot for the whole

image of Fig.�4


Fig. 5. From thalamic input to the VSD signal. A: Post Stimulus Time Histogram of the thalamic afference to our model for the early part of the evoked response. Time 0 is the start of
the stimulation. B: the thalamic afferent are integrated by post-synaptic cells in our column inducing a depolarization after a certain delay in layer IV neurons (green) followed by
layer II neurons (red) and layer V neurons (blue). C: this post-synaptic depolarization induces spiking activity that we depict with a hollowed-up PSTH with similar colorcodes. D:
these activities lead to a global VSD response that starts with typical delays of 5–10 ms after thalamic onset.
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duration of the experiment. Fig. 6A shows the temporal evolution of
the modeled VSD signal (red line) in response to the thalamic
afference (post stimulus time histogram (PSTH) at the bottom) which
is compared to the experimental results obtained on monkey using
VSDI (the mean curve is plotted in black while standard errors are
represented by the gray area).

The time course of the modeled signal in response to an abrupt
change of the input is faster than the experimental one: the onset of
the response shows a large transient peak followed by a plateau and
Fig. 6. Temporal evolution of the VSD signal (red lines), from local to global network. Ea
experimentally are superimposed to the modeled signal (dark gray lines with standard erro
the signal. Experimental trace was obtained on averaging VSD signal over a small region of
luminance was presented for 800 ms (0.5 standard deviation, maximal luminance 86 cd/m
fixation within a 1×1 tolerance window during the whole duration of the experiment. Th
temporal evolution of themodeled VSD signal in response to an input of 800 ms is plotted as a
modeled VSD signal is replotted after the introduction of 50 ms latency scatter on LGN input
interactions introduction. B: zoom on the rising time course of the VSD responses: for the lo
inputs (B2), and for the global network, i.e. after introducing the lateral connections (B3). C:
the VSD responses (input frequency of 64 Hz). D: rising time constant plotted as a function
and global VSD responses (red), providing quantitative contributions of local and lateral in
the transient offset is very sharp compared to the experimental one.
Notice that in column A, the modeled signal is normalized to the
sustained activity of the experimental signal, while in column B, it is
normalized to its transient onset. What can be at the origin of such
different dynamics? We first speculated that that the peak was due to
a network synchronization at the response onset. We thus tested
many parameters (membrane time constants of neurons, spontane-
ous activity, and connections weights), but only the input latency
scatter introduced was efficient at desynchronizing the network and
ch curve is the average of the response for 50 repetitions. Mean responses obtained
r in light gray), normalized to either fit the tonic (A1–A3) or the phasic (B1–B3) part of
interest of V1 of an awake monkey, trained to fixate a central dot while a Gaussian of
2, background luminance of 14 cd/m2). Monkey was rewarded if correctly achieved
alamic afference (PSTH) is shown at the bottom of each figure (black trace). A1: the
function of time for a given input frequency (300 hz). A2: the temporal evolution of the
s. A3: the temporal evolution of the modeled VSD signal is finally replotted after lateral
cal network (B1), for the local network after introducing 50 ms latency scatter on LGN
influence of the latency scatter (from 0 to 60 ms with a step of 10 ms) of LGN inputs on
of latency scatter. E: superimposition of local plus latency scatter (black), lateral (blue)
puts to the total VSD signal.
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Fig. 7. Model tolerance: analysis of the synaptic weight (w) and the connections number
(Nc) parameters. A: temporal evolution of the VSD signal before (black curve) and after
(gray curve) removing one group of connections (WSP2−−N LP5=0). B: temporal evolution
of the VSD signal before (black curve) and after (gray curve) applyingWSP2−−NLP5/2 and
NcSP2−−N LP5⁎2. The input efficiency being kept constant, the two curves can be
superposed.
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slowing the rising time constant of the VSD signal. The analysis of this
parameter to improve the rising time constant of VSD responses is
described in Figs. 6C,D. The beginning of temporal responses is plotted
for several values of the latency scatter (Fig. 6C, from 0 to 60 mswith a
step of 10 ms). Then, in order to quantify the rising time constant of
each response, we use an exponential fitting:

FðtÞ = a + kð1− e−ðt−offsetÞ

τ
Þ + k2ð1− e−ðt−offsetÞ

τ2
Þðt N = offsetÞ ð6Þ

where a, k, k2, τ, τ2 and offset are the fit parameters. By plotting the
rising time constant, i.e. themeanof τ and τ2, as a function of the latency
scatter (Fig. 6D), we obtain an optimal value of 50 ms, instead of the
10 ms first introduced (see the Material and methods section). This
value is actually in accordance with several studies investigating the
temporal latencies of non-lagged thalamic cells in response to retinal
cells stimulation (Mastronarde, 1987; Hartveit and Heggelund, 1992;
Saul and Humphrey, 1990), see recent review of Saul (2008). Increasing
the latency scatter of the LGN inputs (see bottom PSTH) provides the
expected effect, i.e. reducing the peak of the response onset (Fig. 6A2)
and increasing the rising time constant (Fig. 6B2). The rising time
constant of the modeled response (32.3 ms) is now much closer to the
experimental one (35 ms). We have also noticed that the latency
depends on the input frequency of the stimulus (we will nevertheless
keep a constant value of 50 ms for all the input frequencies). However,
the transient onset and offset of the VSD signal are still faster than the
experimental one (notice the response offset in A2 and the zoom of the
response onset in B2). Furthermore, the model response still contains a
prominent phasic component not present in experimental data.

Our next hypothesis was that the discrepancy in time constants
could come from the fact that we modeled an isolated column
representing only one pixel of VSDI, compared to the experimental
conditions where a whole cortical network integrates the visual
stimulation, representing interactions across many pixels. Therefore,
in order to take into account an entire hypercolumn of about
750 μm, we reproduced lateral connections existing between our
column and its neighbor columns. Each neuron of our column
receives excitatory and inhibitory inputs. These lateral inputs were
simulated by using random spike trains whose frequencies were
adjusted to the output frequencies of the local network. For
example, one pyramidal cell in layer II receives spike trains from
neighbors pyramidal and inhibitory cells also in layer II, and the
frequency of these spike trains is given by the output mean
frequency of pyramidal and inhibitory cells of our local column, for
a given thalamic input. Synaptic weight of each lateral connection
was adjusted proportionately to the cortical distance between
neurons, also influencing the synaptic latency of the connection
(Bringuier et al., 1999). Weight distributions for excitatory and
inhibitory lateral connections were adjusted according to quantita-
tive biological data taken from Buzas et al. (2006). The effect of
adding lateral interactions is reported in Fig. 6A3. The global time
course of the signal is largely improved thanks to lateral interac-
tions introduction, resulting in a very close correlation between the
model and the experimental signals. The transient onset and offset
are very close to the experimental one (the rising time constant is
34 ms for the model vs. 35 ms for the experiment) and the model
response was much less phasic, in accordance with the experimen-
tal data (Fig. 6B3). Interestingly, similar tiny phasic component at
the beginning of the response is visible in the experimental and
model responses. What happens in this condition is that the tonic
component of the global response is boosted by the late lateral
component that gradually feeds the modeled column (blue curve in
Fig. 6E). The resulting dynamics (red curve in Fig. 6E) has therefore
a residual phasic component that originates from the local
integration (black curve in Fig. 6E).
Note that we verified that the lateral interactions introduction did
not change the input–output functions for the spiking rate and the
membrane potential of the neurons (see Figs. 4B,E).

Model stability
The model stability was tested by manipulating all the parameters

previously quoted, regarding their responsiveness. In order to prove
the relevance of the model, it is important to verify that the model is
stable to small variations of the parameters and sensitive to larger
variations. For example, we studied in details two important
parameters of the local network: the synaptic weights (w) and the
number (Nc) of connections. Twomain tests are reported in Fig. 7. The
first one (left panel) shows the sensitivity of the model when
removing one group of connections of the network. The second one
(right panel) shows that manipulating the synaptic weight (w) and
the connections number (Nc) parameters, while keeping the input
efficiency constant, does not change the result, as expected.

Several other numerical tests have been issued allowing to verify the
numerical stability of the result with respect to small variations of
parameters values.However,wehave also checked that thoseparameters
do change the response for high variations, verifying that their order of
magnitude is meaningful, and their introduction not a redundance.

Quantitative analysis of the VSD signal sources

We simulated the VSD signal in term of relative fluorescence by
taking relative variations of fluorescence (ΔF) compared to the resting
level (F) observed at rest, similar to real experimental conditions.

Correlating the various compartments with the global population signal
Petersen et al. (2003) and Contreras and Palmer (2003) showed

that the VSD signal and the membrane potential fluctuations of a
single cell are strongly correlated. Here, we first verify that such a
correlation is also observed on our model. We then systematically
inspected which compartments and which activity type (subthresh-
old vs. spiking rate) are at the origin of the time course fluctuations of
the global VSD signal.

If we superimpose the dynamics of the model VSD signal to one
local membrane potential response of one compartment of the model
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Fig. 8. Correlating membrane potential fluctuations with VSDI global signal. A1: individual membrane potential response (blue trace), superimposed to the modeled VSD signal (red
trace, one trial). A2: from A1, the VSD signal is plotted as a function of changes inmembrane potential of the individual neuron. B: graphical representation of the correlation between
the VSD signal and the membrane potential of each compartments as a function of time for an input frequency of 130 hz. Each frame represents a period of time (in milliseconds).
[−200 to−20]: Spontaneous activity. [0 to 50]: Rising phase (time 0 corresponds to the stimulation onset). [50 to 500]: Evoked activity. C: trial to trial correlation analysis between
the VSD signal and the membrane potential of five specific contributions (total, excitatory neurons, inhibitory neurons, layer IV and dendrites in layer V).
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(Fig. 8A1), we observe that the VSD signal and the membrane
potential changes of a single cell are correlated (Fig. 8A2). If we then
plot the VSD signal as a function of the spike rate of a population of
Fig. 9. Correlating spiking ratewith VSDI global signal. A1: post stimulus time histogram constr
themodeled VSD signal (red), whichwas binned at the same value. A2: the VSD signal plotted a
the correlation between the VSD signal and the spike rate of excitatory and inhibitory neurons (
trial correlation analysis between the VSD signal and the spike rate of six specific contribution
single cells (Fig. 9A1), the correlation is only apparent at the transient
onset and offset (input-related signal), but high frequency modula-
tion (noise on the plateau) is not correlated. This result qualitatively
ucted over the entire column (blue), giving spike counts per bin (10 ms), superimposed to
s a function of changes in spike rate of an individual neuron. B: graphical representation of
somas and axons) in each layer. Same frames decomposition as previously used. C: trial to
s (total, excitatory neurons, inhibitory neurons, layer II, layer IV and layer V).
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confirms that the VSD signal changes are principally arising from
synaptic membrane potential fluctuations.

In order to quantify the relationship between the VSD population
signal and both the membrane potential and the spike rate of
neuronal elements, we made a correlation study and quantitatively
explored the question with our model by looking at each compart-
ment independently. Fig. 8B (resp. Fig. 9B) shows a frame sequence of
our cortical column depicting the temporal evolution of the
correlation coefficients (or r2 coefficients) between the membrane
potential (resp. the spike rate) of each single compartment and the
total VSD signal. Each frame represents a different period of time (in
milliseconds): The spontaneous activity (i.e. when no thalamic input
is applied) corresponds to the interval [−200;−20]. The rising phase
corresponds to the interval [0;50], time 0 is the time of the stimulation
onset. Finally, the evoked or sustained activity (i.e. when the thalamic
inputs are applied) corresponds to the interval [50;500]. During
spontaneous and evoked activity, as the correlations were very stable
over time, we averaged over the whole time period. Centered on the
rising phase of the response, this representation provides a direct
comparison of the correlations between on-going and evoked activity.
The trial-to-trial analysis for five (resp. six) specific components is
reported in Fig. 8C (resp. Fig. 9C).

Three main results emerge from this correlation study, either
concerning input-related changes or high frequencies fluctuations of
the signal: (1) the VSD signal ismuchmore correlatedwithmembrane
potential than with spikes. The spiking activity of pyramidal neurons
in layer II globally explains 2% of the VSD variance,whereasmembrane
potential of pyramidal neurons in layer II explains 78%. (2) Not
surprisingly (see the signal computation part in Material and
methods), the VSD signal is mostly correlated with membrane
potential of dendrites in superficial layers (last row in Fig. 8C). The
maximal correlation coefficient that we obtained for all compart-
ments, signal and time period was 0.96 for the rising phase of
superficial layers depolarization. (3) At the stimulation onset, the
correlation between the VSD signal and membrane potential of
compartments in layer IV largely increases (from 0.13 to 0.72), the
same being true for spiking activity (from 0.02 to 0.52). The latter
result is clearly visible in the rising phase frame in Figs. 8B and 9B, and
also in the trial-to-trial analysis of Fig. 8C (fourth row), where the best
correlation between VSD signals and layer IV membrane potential is
found at the rising phase, i.e. the phase occurring at the stimulation
onset delineating spontaneous activity from the evoked activity. This
increase is due to the thalamic input providing a strong and local input
in layer IV, thereby increasing temporarily the correlation with the
VSD signal.

Three other results are also interesting to notice: (4) on-going and
evoked activities present almost the same correlation coefficients
(Figs. 8B, 9B). (5) Excitatory and inhibitory neurons show very similar
correlation with the VSD signal. Lastly, (6) spiking activity of
inhibitory neurons are more correlated to the VSD signal than
excitatory neurons (r2=0.3 for inhibitory neurons in layer II, in
comparison to 0.015 for respective excitatory neurons).

We thereforeobserve that therearedynamic changesof compartment
correlations to the global VSD signal at a given thalamic input strength.
Note that we ran similar correlation studies with the implementation of
the synaptic depression parameter and all our results did not change
qualitatively.However, aswepreviouslymentioned, thebalancebetween
activity levels in these various compartmentswill changewhen the input
strength varies. We will now therefore inspect how the activity level
affects the different contributions to the VSD global signal.

Contributions to the VSD signal when increasing the level of input
activity

To investigate how changing the input frequency can affect the
contribution of the various compartments to the population signal, we
reproduced another VSDI experiment where the stimulus contrast was
gradually increased (Reynaud et al., 2007, drifting sine-wave gratings
presented at seven different contrasts for 600 ms) by computing the
temporal evolution of the total VSD signal for seven different thalamic
rates (Figs. 10A,B). The setofmodeledVSDresponsesarevery close to that
of experimental signals at plateau values. The total VSD signal, averaged
during 600 ms, is plotted as a function of input rate to be compared with
the experimental contrast response function (Figs. 10D,E). This quanti-
tative representation illustrates that the experimental and the model
curves indeed have a very similar shape, both fitted by Naka–Rushton
function. Our global columnar activation is therefore behaving very
closely to the biological column recorded experimentally, except that the
input frequency rangewasnot realistic.Wethenran the sameexperiment
with the synaptic depression term (Figs. 10C,F), and found a similar
behavior, although scaled down to a more realistic input rate and with
clearer saturation at high input rate. However, note that, for both
simulations, there is a difference in the VSD time course. Experimentally,
it is interesting to observe that, in response to a small drifting grating, the
experimental VSD (Fig. 10A) is slower than the onemeasured in response
to a static Gaussian luminance stimulus (Fig. 6).

Following the previous formula (Eq. (4)), we can now decompose
the VSD signal in its different contributions: excitation, inhibition,
somas, axons, dendrites, layer II, layer IV and layer V, and see how
their participation to the global signal changes for different levels of
input activity. Here we use our model to quantitatively predict the
different contributions of the VSD signal, as a function of thalamic
increasing input (Fig. 11). For all contributions, we computed the
ratios as the amount of VSD signal from one compartment divided by
the total VSD signal.

First,we lookedat the relative contributionof excitationvs inhibition
(Fig. 11A). Globally, excitatory cells are responsible for 83% of the total
VSD response, and inhibitory cells participation represents 17% of the
VSD signal. The ratio between inhibition and excitation (see squares,
right panel) shows that inhibition contribution increases with input
rate, about 2.5% from low to high levels of activity. The proportion of
inhibitory cell contribution is less than the predicted on the sole basis of
activity level and proportion of cellular types, demonstrating the utility
of using such a model (see Discussion). Indeed, if one simply inspects
what is the contribution of inhibition when decomposed at the level of
dendrites soma and axons (Fig. 12A), we noticed that inhibitory
dendrites contribute more than axons and somas. This might be caused
by (i) spike thresholding that occurs at the soma, (ii) small spike width
of inhibitory cells that minors the inhibitory spiking contribution, and
(iii) inhibition that shunts membrane potential at the soma and not at
the dendrites.

We then investigate whether the post-synaptic activity contributes
differently than spiking activity (Fig. 11B). Globally, 77% of the optical
signal comes from dendritic post-synaptic activity. The ratio between
axonic and dendritic activity is decreasing with input rate, but weakly,
suggesting that synaptic activity is even stronger at high level of activity
(see squares, right panel). We attribute this increase in the fact that
subthreshold PSPs at dendritic locations are not thresholded by spike
generation,whereas spiking activity saturates at high level of activity. In
other words, PSPs size continues to increase whereas spiking activity
reaches a saturation plateau (see Fig. 12B for an illustration).

What is the participation of cells belonging to deep layers in the
global signal (Fig. 11C)? As expected, the optical signal mostly
originates from layers II/III neurons (81%), but, the model shows that
19% of the signal in layer II/III comes from the superficial dendrites of
deep layer neurons (layers IV and V). The ratio between deep and
superficial neurons shows a tiny increase of deep layers contribution
with input rate (see squares, right panel).

Finally, we quantified whether the proportion of activity arising
from the local connectivity changes with input rate (Fig. 11D). The
ratio is largely decreasing when increasing the input rate, showing
that local activity contribution decreases with input rate. At low input,
the signal is only coming from local recurrent activity (100%) and



Fig. 10. Total VSD signal computed from the entire network (local connectivity+lateral interactions (B panel) and local connectivity+lateral interactions+synaptic depression (C panel)) and plotted as a function of thalamic input rate.
extbfA: VSDI experiment on monkey using VSDI (Reynaud et al., 2007). The experimental VSD signal is plotted as a function of time and in response to different input contrasts. In this experiment, monkey had to fixate a central dot while
drifting sine-wave gratings are presented behind a circular aperture (2 dia) for 600 ms. Target was presented at 7 different contrasts: 2.5, 5, 10, 20, 40, 60 and 80%. B, C: model, each response is the average of the VSD signal for 100 repetitions
of a given input rate.
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Fig. 11. VSD responses in function of thalamic input rate showing quantitatively the different contributions of the VSD signal when increasing the level of input activity. The rationale
between the different contributions are plotted in the right column. Squares are the contributions from our full model without synaptic depression, whereas triangles for the full
model with synaptic depression. A: excitation and inhibition contributions. The ratio inhibition/excitation shows that inhibition contribution lightly increases with input rate. B:
somas, axons and dendrites contributions. The ratio between axonic and dendritic activity is weakly decreasing with input rate. C: layers contributions. Deep layers contribution
weakly increases with input rate, as shown by the ratio in the right. D: local vs. global contributions. The ratio between local and global activity shows that local activity contribution
decreases when increasing the input activity.
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decreases to 60% for higher input frequency (see squares right panel).
The rest of the VSD global signal is coming from inputs from lateral
connectivity that contribute more and more for increasing input rate.

Qualitatively, none of these results were affected by the addition of
the synaptic depression parameter in our model (triangles in right
panel). Input rate similarly increased the contribution of inhibition,
decrease spiking activity participation, did not affectmuch lower layer
participation, and decrease the overall contribution of local network
to the global VSD signal. The only main effect was a global scale down
of the effect to more realistic thalamic input rates. Thereby, the model
quantifies the fact that 80% of the VSD signal originates from dendritic
activity of excitatory neurons in superficial layers. However, inhibi-
tory cells, spiking activity and deep layers represent about 20% of the
total that is non-negligible. The VSD signal should be considered as a
dynamic signal whose constitution depends on time and activity
levels.
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Fig. 12. Decomposition of the inhibition contribution. A: contributions of the different part of the neuron (somas, axons, and dendrites) to the inhibition contribution. B: dendritic
and axonic activities of an individual neuron in layer II/III for low vs. high level of input activity.
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Discussion

Summary and major results

The purpose of this paperwas to better understandwhat exactly the
voltage-sensitive dye imaging signal measures. This question is indeed
difficult to resolve at the physiological level since the signal is multi-
component: the dye reflects the dynamics of themembrane potential of
allmembranes in theneuronal tissue, includingall layers of the circuitry,
all cell types (excitatory, inhibitory, and glial) and all neuronal
compartments (somas, axons, and dendrites). However, no other
model has been built in the literature to quantitatively examine all
these different contributions as well as the spiking activity of the
network and the origin of the VSD signal remain unresolved (see
(Chemla and Chavane, 2010), for a review on the subject). Experimen-
tally, this quantification is very difficult to realize in vitro and quasi
impossible in vivo. Qualitatively, it is assumed that the VSD signal in a
given pixel mostly originates from the dendrites of upper layer cortical
cells, and therefore, mainly reflects dendritic activity (Grinvald and
Hildesheim, 2004). To perform a quantitative analysis taking into
account all these details, we used a realistic biophysical cortical column
model, at a mesoscopic scale, with biological and electrical neural
parameters of the laminar cortical structure. VSD signal was computed
with a linear formula taking into account each compartment level of
depolarization,membrane surface and staining.Wevalidated themodel
by comparing simulated and experimental VSD signals.

The model predicts the different contributions of this signal. As
expected, the VSD signal mainly reflects dendritic activity (77%) of
excitatoryneurons (83%) in superficial layers (81%). However, inhibitory
cells (17%), spiking activity (23%) and deep layers (19%) represent about
20% of the total signal that is non-negligible and should be taken into
account in the interpretation of the VSD signal. Importantly, the
contributions of these compartments change as a function of the general
level of input activity, suggesting that the VSD signal has a dynamical
multi-component origin. This result is reinforced by a correlation
analysis that unveils a stronger involvement of layer IV neurons and
inhibitory spiking activity during transient input (onset of the stimulus
for example).

Dissecting the VSD signal, and back

Our model's results suggest that the contribution of inhibitory cells
to the global VSD signal increases with increasing input, from 15.6% to
17.8%. Could these results be predicted just on the basis of numbers the
model was fed with? To infer the overall inhibitory contribution, one
should take into account the fact that inhibitory cells are four times less
numerous than excitatory cells, but also the cellular morphology
differences between stellate and pyramidal neurons (larger membrane
surface). In our model, following Table 1, the membrane surface
integrated over all inhibitory compartments represents only 12%of total
membrane surface. This is lower than our observation and may be
explained if now one takes into account activity level. Indeed, inhibitory
cells are following the inputwith a higher spiking rate and subthreshold
depolarization (see Fig. 4). However, a deeper look at these values,
tuned to fit experimental observations (Contreras and Palmer (2003)),
actually shows that the ratio of inhibitory spiking activity over the sum
of excitatory and inhibitory spiking rate does not changewith increasing
input rate (stays around 77%). At the level of membrane potential
depolarization, the ratio is even decreasing from 75% to 62%.

This departs from our model prediction that inhibitory contribution
actually increases with input rate. Deviation from such simple linear
predictions originates from the multiple non-linearities that actually
control the model behavior, and supposedly the actual biological
network. For example, non-linearities exist in the conductance-based
inhibition and spike generation that constraint membrane potential
dynamics at the somatic level. Whenwe decompose the contribution of
inhibition at the level of dendrites, soma and axons (Fig. 12A), we
indeed observe that the spike thresholding and spikewidth (smaller for
inhibitory cells) strongly reduce the inhibitory contribution. These
observations demonstrate the need of a detailed biophysical model that
takes into account all these details to make an exact estimation of the
relative contribution of inhibition and excitation.

Similarly, the relative contribution of subthreshold vs. spiking
activity is difficult to predict a priori. One would also have to take into
account on one hand, linear parameters such as the smaller depolar-
ization area under spiking activity, but also the smaller surface of axons
compared to dendritic trees. On the other hand, non-linear interaction
parameters as mentioned above are also present. Our model predicts
that the overall contribution of pure spiking activity (on axons) to VSDI
is of the order of 14%. Importantly, it also predicts that this contribution
will decrease with input strength from 15.2% to 13.8%. We explain this
decrease by the major contribution to VSD signal of synaptic activity in
dendritic arborization of upper layers that is not constrained by
membrane potential clamping occurring in the soma because of spikes
or inhibitory conductances (Fig. 12B).

An important additional information is coming from the studies of
temporal correlationbetweendifferent compartments and theglobalVSD
signal. The high frequency variation of the global VSD signal ismostly due
to dendritic activity. Importantly, the global VSD signal variance is equally
well explained for excitatory and inhibitory neurons, and for spontaneous
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and evoked activity. This correlation study also informed us that, during
the response transient phase, the VSD signal becomes strongly correlated
to the activity of layer IV neurons (in accordance with Bush and Priebe,
1998) and also to the spiking activity of inhibitory neurons. This brings us
to the conclusion that VSD transient and sustained phases have different
origins. Itmay have important consequencewhen interpreting the signal,
especially regarding more complex natural visual stimuli, which contain
many transients (Kremkow, 2009).

These results suggest that the relative contribution of all compart-
ments are not only a function of input strength, but also of time,
transient and sustained input having different impacts on the recurrent
cortical column (Douglas and Martin, 1991; Borg-Graham et al., 1998;
Muller et al., 2001; Crowder et al., 2008; Stoelzel et al., 2008). More
precisely, it is interesting to note that the synchrony of thalamic input
generates a strong transient in the VSDsignal that is attenuated by onset
asynchronies and the presence of horizontal inputs (Fig. 6). However, a
small phasic component is always present in the model and also in the
observed response. This is strongly reminiscent of the so-called “notch”
component introduced by Sharon and Grinvald (2002), identified by
these authors as “a small transient drop in the rate at which the evoked
response increased (...) which we term the evoked deceleration–
acceleration (DA) notch”. Our model suggests that this notch is the
residual of a phasic response to stimulus onset, hidden under a large
horizontal convergence of input from neighboring columns. One
prediction of our model is therefore that the time constant of VSD
signal is slowed down by horizontal converging input, that contributes
more and more with time (Fig. 6E) and with increasing contrast
(Fig. 11D). The VSD response is thus dynamic, from local to global
activity with a time constant of about 100 ms (Fig. 6E).

Whenwe look at the contribution of lower layers, our result shows
that, even if the dye gradient we chose is favoring dramatically upper
layers (95%), cells in layer IV or layers V/VI contribute more than
expected by the dye gradient. This is because activity in superficial
layers is also provided by layers V and VI pyramidal neurons, whose
apical dendrites do reach superficial layers (Thomson and Bannister,
2003). Because of the presence, in upper layers, of dendrites of lower
layers, the contribution is four times more than what the gradient
imposed (19% instead of 5%). In this model we used the distribution of
fluorescence intensity estimated by Lippert et al. (2007) who
concluded that the VSD signal mostly originates from superficial
layers (I–III). One can question how much the dye gradient indeed
interferes with our results. The only quantitative data on dye gradient
comes from experiments on the rodent model by Kleinfeld and
Delaney (1996), Petersen et al. (2003) and Lippert et al. (2007).
Following the staining depth of the dye, the authors concluded that
the VSD signals originate from superficial cortical layers I–III. Their
staining procedures on rat barrel and visual cortices however differ
from that used on higher mammal species like monkey. We have
therefore tested other ad-hoc values of dye gradient. When choosing
striking different values (λ2=0.6, λ4=0.3 and λ5=0.1), it appears
that neither the relative contributions of the different components
(excitation, inhibition, spiking activity, and synaptic activity), nor
their global evolution when increasing the level of input activity, have
changed. As expected, the relative contribution of the different layers
has obviously changed. For these values, 45% of the total signal comes
from neurons in layer II/III, 20% from neurons in layer IV and 35% from
neurons in layer V. The latter contribution can be decomposed into
more precise quantities: 7% is from dendrites found in layer II/III, but
belonging to layer V pyramidal cells, 20% is from dendrites found in
layer IV but also belonging to layer V pyramidal cells and the last 8% is
actually from neurons in layer V.

Oncewehave shown that theVSD signal ismulti-composite and that
the various contributions are a function of time and contrast, we may
wonder whether we could solve the inverse problem? In other words,
from the actual VSD signal, would it be possible to predict the
contribution of the various components? This paper showed that four
unknown variables (contributions of the different compartments) are a
function of two known variables (contrast and time here). Ideally, one
would like to find two more known variables that would control the
unknowns differentially. From there, theoretically at least, we could
reconstruct the relative contributions of all these variables from the
global VSD signal. However, for that purpose, the model would need to
be improved drastically to represent more functional parameters.
Indeed, adding the notion of receptive field encoding orientation and
position parameters could lead to a well-posed reverse problem
(assuming linear equations), with four unknowns and four variable
parameters (contrast, time, orientation and position). Therefore, for one
given pixel, these four parameters could be varied in real VSDI, leading
to a set of experimental recordings that could be used to adjust our
model for reverse-engineering. This, ideally, could allow us to find back
the origin of the signal. We therefore wish to improve our model in the
future to representmore functional parameter spaces in order to better
constrain the various compartments participation to the global VSD
signal.

The role of synaptic depression

Inhibition within our cortical column was not enough per se to
control and dampen the thalamic excitatory input. This surprised us as
we tuned our model to incorporate realistic inhibition, with important
properties such as a much higher ouput rate than excitatory neurons,
and a shunting effect on post-synaptic somatic compartments. Despite
these important parameters, and unlike contrast response function of
V1 neurons, our modeled neurons did not completely saturate at high
input rates (see Fig. 4). We therefore decided to introduce synaptic
depression at the thalamo-cortical synapses, as it was suggested to play
an important role in contrast gain control mechanisms (Carandini et al.,
2002). This term was indeed enough for scaling down the input rate to
more realistic regime for which saturation of cortical neurons were
observed. We controlled how this new parameter affected our main
results. Importantly, except from scaling down all these effects for
realistic input rate, synaptic depression did not make any qualitative
changes in our correlation and contribution studies. We therefore
conclude that this parameter is fundamental for adjusting the operating
range of the cortical column, without affecting the contribution of the
various neuronal compartments to the global VSD signal.

Is the biophysical model detailed enough?

The present work shows that there was a need to develop a model
at an intermediate scale between the so-called microscopic and
mesoscopic scales. This simple compartmental model (only 8 to 10
compartments per neurons) is detailed enough in order to simulate
and better understand which part of the neuron is involved in the
generation of the dye signal, while it is simple enough to both derive
tractable numerical simulations, and (even more important) do not
over-parametrize the problem.

Although we modeled in details only a unique cortical column of
50×50 μm2 lateral area, we reproduced the activity of an entire
hypercolumn of about 750 μm by simulating continuous background
activity and lateral connectivity between neighboring cortical col-
umns. In order to calibrate neuron responses, we used optimization
algorithms to select model parameters in accordance with experi-
mental observations, both at single cell (Nowak et al., 2003) and fully
connected network (Contreras and Palmer, 2003). By doing a stability
analysis, we verified the reliability of the model with respect to small
and large variations in parameter values. The model was built step by
step, i.e. single neurons, local network, background activity and then
lateral interactions, in order to control precisely the action of each
parameter and, as explained above, to find the minimal number of
parameters required to reliably reproduce the VSD signal, as obtained
experimentally using VSDI on monkey primary visual cortex.
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A more detailed model of the neuron would have allowed us to
play with a larger number of parameters, maybe allowing to
encounter for “any” signal, but the related interpretation would
have been subject to caution. At this stage, a potential perspective and
improvement for the model would be the introduction of new non-
linearities and test how much they affect our results. For example, we
could introduce synaptic depression at thalamo-cortical synapses,
suggested to play an important role in contrast gain control
mechanisms (Carandini et al., 2002). However, our position here
was to use theminimalmodel which could integrate the data available
in the literature, and which was relevant for the addressed questions.

Another perspective is to increase the model size towards a larger
network, accounting for columnar cortical architecture such as
orientation maps. With such a model, new questions could be
addressed, for example, trying to explain why VSDI signal has such
a poor orientation selectivity (Sharon and Grinvald, 2002). Indeed, the
response of any orientation column to a stimulus oriented orthogonal
to the preferred direction is about 80% of the maximum response
(Grinvald et al., 1999). In comparison, for the orthogonal stimulus,
neurons have spiking response that is nearly null (5% of the
maximum) and subthreshold activation a bit more than 20% of the
maximum response (Monier et al., 2003). Therefore, a model at this
stage would help understanding where the remaining 60% of
activation in the global VSD signal is coming from. To enlarge the
model, a large amount of improvements would be needed. For
example, a higher degree of specific lateral interactions among distant
columns of varying orientation selectivity should be implemented.
Such improvement of the model would then allow us to generate a
receptive eld structure for each of our cells. This would have a high
interest as we could specifically study the impact of subthreshold
waves of activity converging from the periphery of receptive elds on
VSDI signals (Bringuier et al., 1999): so far, we have only modeled the
horizontal waves with convergent random spike trains. Furthermore,
this will allow us to study more complex dynamics of stimuli whose
spatial phase is dynamically changing.

At the implementation level, enlarging the model would require a
higher order of magnitude of calculation, which is easily realizable on
a cluster (though this is far beyond the present work), the underlying
NEURON software having this parallelization capability. Another track
would be to make our model interact with a mesoscopic model of the
V1 laminar network (i.e. a model considering a large network of
punctual spiking neurons), in order to simulate the present pixelic
column with more realistic inputs that pure stochastic inputs. At the
implementation level, this requires the capability to have several
neural simulators interoperable (i.e. a meta-simulator), which is
realizable nowadays with the PyNN meta-simulation platform
(Davison et al., 2009), though the present software tools are still at
the development stage.

Inadequacies with experimental data and limitations

Although the model accurately reproduces the VSD signal, there
are some experimental results, listed below, with which it is not
consistent. However, these discrepancies are mainly due to the
minimalism of the model.

The present model does not have a realistic representation of the
LGNdrive. Indeed, in thepresent study, inputs signals fromthe thalamus
intoneurons in layer IVare simulatedbyapplying randomspike trainsof
a given averaged discharge frequency. This solution is a first good
approximation and was good enough to reproduce experiments with
static stimuli. However, for a more complex stimulation (Fig. 10), i.e.
drifting sinusoidal grating, the model could not reproduce the slower
time course observed experimentally. With the model such as the one
presentedhere,we could notfinda parametric solution thatwould slow
down the response time course to fit the experimental observation.
These conditions were good enough to study the contrast response
function at stead-state levels though. However, this discrepancy
suggests that it would be necessary for future studies to add new
functionalities that would allow to improve the realism of the thalamo-
cortical integration.

Improvements could be achieved on two aspects of ourmodel. One
important point is that thalamic input rate should be modulated by a
phasico-tonic envelope such as implemented in Gazeres et al. (1998)
model of X-non-lagged cells, in order to reveal the dynamics of the
initial ON transient in the VSD signal (Slovin et al., 2002; Sharon and
Grinvald, 2002; Sharon et al., 2007; Ahmed et al., 2008; Lippert et al.,
2007; Meirovithz et al., 2009). Moreover, the input should not only
incorporate X-non-lagged type as we did in the model, but the full
response dynamic should also be modulated by Y and lagged thalamic
inputs (Hartveit and Heggelund, 1992, 1994). The convergence of
such an input mixture will most probably affect the global time course
of our model. A second point is that neurons in our cortical column are
devoid of receptive field structure (i.e. they are thus considered to be
stimulated in their center, not in their periphery) and hence cannot
capture the complex dynamic of a stimulus whose phase is
dynamically changing. All thalamic inputs will be integrated similarly
for all neurons. We believe that this is the main origin of our
discrepant time-courses. Drifting grating will affect differently the
dynamical response of neurons depending on their receptive field
structure (Movshon et al. (1978a,b), Skottun et al. (1991), Contreras
and Palmer (2003)). We therefore believe that the phase-dependent
and independent responses summed over the whole columnwill slow
down the global VSDl time course. However, to implement this new
functionality a significant enlargement of the model size should be
achieved. To take into account differences in receptive field position,
orientation and scatter (Albus, 1975a,b), a hypercolumn size should
be reached at least. This will be the direction of future development of
our model. Interestingly, using such a model enlargement, new
questions regarding the origin of the VSDI signal could be tackled,
such as the ones described above.

The presentmodel contains no detailed representation of the long-
range lateral connections, nor does it contain any NMDA channels. In
comparison, the large scale VSD cortical model of Rangan et al. (2005),
although restricted to a single layer and to point neurons, does contain
a realistic number of ion channels and extends laterally over several
mm2 (see Chemla and Chavane, 2010, for a review on VSD models).
Spiking neurons over large cortical distances are connected by long-
range connections through AMPA and NMDA synapses. The authors
claimed that these slow NMDA conductances allow to capture the in
vivo behavior of coherent spontaneous activity. These authors showed
that a very small ratio ofNMDA contribution (5%) is enough to provide
the desired features and turn the cortex into a regime that they called
“intermittent desuppression”. According to this study, without NMDA
receptors, cell's spontaneous activity will not be consistent with in
vivo experimental observations in the cat visual cortex anymore (Cai
et al., 2005). To check whether NMDA conductance would affect
spontaneous level of activity and our signal dynamics, we therefore
made control simulations with NMDA conductance at long-range
synapses (see Supplementary Fig. 2), according to the description of
Rangan et al. (2005) and Cai et al. (2005). At the global level, this new
parameter did not affect significantly the VSDI time course
(τ=32 ms) or the fractional signal (ΔF/F=0.22 for an input rate of
80 hz). In comparison to Rangan et al. (2005) and Cai et al. (2005)
models, though, our model was not large enough to capture dynamic
propagation of horizontal activity for which NMDA conductance
might reveal to have a more fundamental role.

Conclusion

Our aim in the present study was to raise awareness on the
dynamic origin of the VSDI signal. On one hand, our model enables to
have a realistic estimation of the relative contributions of the various
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components constituting the global signal. On the other hand, it
revealed that the compositionality of the signal is highly dynamic and
depends on input strength and transience. We believe that these
global observations will not be affected by improving the microscopic
level or enlarging the mesoscopic aspect of the model. Rather, this
study is the first attempt to better apprehend this complex signal and
should help interpreting and designing VSDI experiments. We hope
that further developments of such direct models will allow at one
stage to help solve the inverse problem.
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